26,716 research outputs found

    Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator

    Full text link
    We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly coupled in series by a tunnelling barrier forming an 'ionic' molecular state. We employ a Josephson oscillator formed by a long Nb/Al-AlOx_x/Nb junction as a microwave source. We find photon-assisted tunnelling sidebands induced by the Josephson oscillator, and compare the results with those obtained using an externally operated microwave source.Comment: 6 pages, 4 figure

    Spin blockade in ground state resonance of a quantum dot

    Full text link
    We present measurements on spin blockade in a laterally integrated quantum dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~ 50 electrons. At certain electronic states we find an additional mechanism suppressing electron transport. This we identify as spin blockade at zero bias, possibly accompanied by a change in orbital momentum in subsequent dot ground states. We support this by probing the bias, magnetic field and temperature dependence of the transport spectrum. Weak violation of the blockade is modelled by detailed calculations of non-linear transport taking into account forbidden transitions.Comment: 4 pages, 4 figure

    Non-thermal origin of nonlinear transport across magnetically induced superconductor-metal-insulator transition

    Full text link
    We have studied the effect of perpendicular magnetic fields and temperatures on the nonlinear electronic transport in amorphous Ta superconducting thin films. The films exhibit a magnetic field induced metallic behavior intervening the superconductor-insulator transition in the zero temperature limit. We show that the nonlinear transport in the superconducting and metallic phase is of non-thermal origin and accompanies an extraordinarily long voltage response time.Comment: 5 pages, 4 figure

    Quantum Games with Correlated Noise

    Full text link
    We analyze quantum game with correlated noise through generalized quantization scheme. Four different combinations on the basis of entanglement of initial quantum state and the measurement basis are analyzed. It is shown that the advantage that a quantum player can get by exploiting quantum strategies is only valid when both the initial quantum state and the measurement basis are in entangled form. Furthermore, it is shown that for maximum correlation the effects of decoherence diminish and it behaves as a noiseless game.Comment: 12 page

    XMM-Newton View of PKS 2155-304: Characterizing the X-ray Variability Properties with EPIC-PN

    Get PDF
    Starting from XMM-Newton EPIC-PN data, we present the X-ray variability characteristics of PKS 2155-304 using a simple analysis of the excess variance, \xs, and of the fractional rms variability amplitude, fvar. The scatter in \xs\ and \fvar, calculated using 500 s long segments of the light curves, is smaller than the scatter expected for red noise variability. This alone does not imply that the underlying process responsible for the variability of the source is stationary, since the real changes of the individual variance estimates are possibly smaller than the large scatters expected for a red noise process. In fact the averaged \xs and \fvar, reducing the fluctuations of the individual variances, chang e with time, indicating non-stationary variability. Moreover, both the averaged \sqxs (absolute rms variability amplitude) and \fvar show linear correlation with source flux but in an opposite sense: \sqxs correlates with flux, but \fvar anti-correlates with flux. These correlations suggest that the variability process of the source is strongly non-stationary as random scatters of variances should not yield any correlation. \fvar spectra were constructed to compare variability amplitudes in different energy bands. We found that the fractional rms variability amplitude of the source, when significant variability is observed, increases logarithmically with the photon energy, indicating significant spectral variability. The point-to-point variability amplitude may also track this trend, suggesting that the slopes of the power spectral density of the source are energy-independent. Using the normalized excess variance the black hole mass of \pks was estimated to be about 1.45×108M1.45 \times 10^8 M_{\bigodot}. This is compared and contrasted with the estimates derived from measurements of the host galaxies.Comment: Accepted for publication in The Astrophysical Journa

    Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor

    Get PDF
    Systematic ac susceptibility measurements have been performed on a MgB2_2 bulk sample. We demonstrate that the flux creep activation energy is a nonlinear function of the current density U(j)j0.2U(j)\propto j^{-0.2}, indicating a nonlogarithmic relaxation of the current density in this material. The dependence of the activation energy on the magnetic field is determined to be a power law U(B)B1.33U(B)\propto B^{-1.33}, showing a steep decline in the activation energy with the magnetic field, which accounts for the steep drop in the critical current density with magnetic field that is observed in MgB2_2. The irreversibility field is also found to be rather low, therefore, the pinning properties of this new material will need to be enhanced for practical applications.Comment: 11 pages, 6 figures, Revtex forma

    The Quantum Nature of a Nuclear Phase Transition

    Get PDF
    In their ground states, atomic nuclei are quantum Fermi liquids. At finite temperatures and low densities, these nuclei may undergo a phase change similar to, but substantially different from, a classical liquid gas phase transition. As in the classical case, temperature is the control parameter while density and pressure are the conjugate variables. At variance with the classical case, in the nucleus the difference between the proton and neutron concentrations acts as an additional order parameter, for which the symmetry potential is the conjugate variable. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4^{4}He-3^{3}He liquid mixtures. We present experimental results which reveal the N/Z dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.Comment: 5 pages, 4 figure

    Isocaling and the Symmetry Energy in the Multifragmentation Regime of Heavy Ion Collisions

    Get PDF
    The ratio of the symmetry energy coefficient to temperature, asym/Ta_sym/T, in Fermi energy heavy ion collisions, has been experimentally extracted as a function of the fragment atomic number using isoscaling parameters and the variance of the isotope distributions. The extracted values have been compared to the results of calculations made with an Antisymmetrized Molecular Dynamics (AMD) model employing a statistical decay code to account for deexcitation of excited primary fragments. The experimental values are in good agreement with the values calculated but are significantly different from those characterizing the yields of the primary AMD fragments.Comment: 12 pages, 6 figure
    corecore